RBF-based surrogate model for evolutionary optimization

نویسندگان

  • Lukás Bajer
  • Martin Holena
چکیده

Many today’s engineering tasks use approximation of their expensive objective function. Surrogate models, which are frequently used for this purpose, can save significant costs by substituting some of the experimental evaluations or simulations needed to achieve an optimal or near-optimal solution. This paper presents a surrogate model based on RBF networks. In contrast to the most of the surrogate models in the current literature, it can be directly used for problems with mixed continuous and discrete variables – clustering and generalized linear models are employed for dealing with discrete covariates. The model has been tested on a benchmark optimization problem and its approximation properties are presented on a real-world ap-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surrogate Model Assisted Cooperative Coevolution for Large Scale Optimization

It has been shown that cooperative coevolution (CC) can effectively deal with large scale optimization problems (LSOPs) through a divide-and-conquer strategy. However, its performance is severely restricted by the current context-vector-based sub-solution evaluation method since this method needs to access the original high dimensional simulation model when evaluating each sub-solution and thus...

متن کامل

Power optimization of a piezoelectric-based energy harvesting cantilever beam using surrogate model

Energy harvesting is a conventional method to collect the dissipated energy of a system. In this paper, we investigate the optimal location of a piezoelectric element to harvest maximum power concerning different excitation frequencies of a vibrating cantilever beam. The cantilever beam oscillates by a concentrated sinusoidal tip force, and a piezoelectric patch is integrated on the beam to gen...

متن کامل

Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions

Optimization Involving Expensive Black-Box Objective and Constraint Functions Rommel G. Regis Mathematics Department, Saint Joseph’s University, Philadelphia, PA 19131, USA, [email protected] August 23, 2010 Abstract. This paper presents a new algorithm for derivative-free optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. The proposed al...

متن کامل

Constrained Evolutionary Optimization by Approximate Ranking and Surrogate Models

The paper describes an evolutionary algorithm for the general nonlinear programming problem using a surrogate model. Surrogate models are used in optimization when model evaluation is expensive. Two surrogate models are implemented, one for the objective function and another for a penalty function based on the constraint violations. The proposed method uses a sequential technique for updating t...

متن کامل

A Study on Metamodeling Techniques, Ensembles, and Multi-Surrogates in Surrogate-Assisted Memetic Algorithms

Surrogate-Assisted Memetic Algorithm(SAMA) is a hybrid evolutionary algorithm, particularly a memetic algorithm that employs surrogate models in the optimization search. Since most of the objective function evaluations in SAMA are approximated, the search performance of SAMA is likely to be affected by the characteristics of the models used. In this paper, we study the search performance of usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012